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LETTER TO THE EDITOR

Photoelectric effects in a quantum point contact with an
artificial impurity
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Institutt for Fysikk, The Norwegian University of Science and Technology, NTNU,
N–7034 Trondheim, Norway

Received 16 August 1996

Abstract. I present exact numerical calculations on photon induced currents in a quantum point
contact configuration with an artificial impurity potential. The presence of the impurity potential
induces a net particle current in one direction only. The induced voltages for a corresponding
open circuit are estimated. The calculations show that the effect is robust and easily within the
experimental range.

Recent photoconductance experiments [1, 2, 3] on quantum point contacts (QPCs) in the
two-dimensional electron gas (2DEG) displayed oscillations. The first experiment by Wyss
et al [1] was motivated by theoretical predictions [4]. The predictions were that additional
ministeps should occur in the quantized conductance of the QPC. However, these ministeps
were not observed in the experiments, and there has been argument over whether the
observed oscillations are the result of photon-assisted transport or merely of heating of
the 2DEG. The theoretical work by Grincwajget al [5] gave a different criterion for
which contribution to the photoconductance dominates from that used in [4], taking into
account the conservation of electronic momentum. This modified the photoconductance
oscillations, but the oscillations still had a step-like character. Both these theoretical
papers [4, 5] were based on a semiclassical and adiabatic description of electronic motion.
In a recent work [6] exact numerical results for the photoconductance were given, and it
was shown that in order to have step-like oscillations in the photoconductance, the zero-field
conductance steps should be very sharp. From this point of view, it is not surprising that
step-like oscillations were not found experimentally. The numerical method used in [6]
is the recursive Green function technique applied to the continuous Schrödinger equation
in a mixed representation [7] of transverse eigenfunctions and the longitudinal coordinate.
Based on the same numerical scheme, I now present calculations for a simple asymmetric
configuration. In thisasymmetricgeometry the radiative field does not merely alter the
voltage–current characteristics from the zero-field case, itinduces currents/voltages in
situations where, without microwaves, there were none. Photovoltaic effects in asymmetric
structures have been considered earlier [8, 9]. These analytic approximate calculations were
based on adiabatic theory.

In the following I neglect the electron–electron interaction and assume spin degeneracy.
I further study DC transport and assume stationary conditions. Consider a QPC configuration
as indicated in figure 1 under the influence of a coherent radiative field with frequencyω/2π .
Neglecting spontaneous emission, we can write the DC electric current from left (L) to right
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Figure 1. A plot of the QPC configuration considered in this paper. The coordinates are in
units of the asymptotic width of the channel. The circles indicate the two antidot potentials used
in the calculations. The antidot potential should be sufficiently close to the QPC in order to
have any influence on the transport properties, but sufficiently far from the QPC that transport
is dominated by the QPC.

(R) in the spirit of Landauer and B̈uttiker [10, 6] as

I = 2e

h

∑
n

∫ ∞

0

[
TR,L(E + nh̄ω, E)fµL

(E) − TL,R(E + nh̄ω, E)fµR
(E)

]
dE (1)

whereTR,L(E + nh̄ω, E) is the sum of transmission probabilities for particles from the left
with energyE to the right with final energyE + nh̄ω. Here,e is the electronic charge. In
the following, I shall consider two possibilities. First, I assume that the chemical potentials,
µL/R, are kept equal, and the effect of the radiative field is to induce an electric current,
I , through the device. From time reversal symmetry (I neglect spontaneous processes)
TL,R(E + nh̄ω, E) = TR,L(E, E + nh̄ω) so (1) reduces to

I = 2e

h

∫ ∞

0
1T (E)fµ(E)dE ≡ 2e

h
〈1T 〉EF (2)

where

1T (E) =
∑

n

[
TR,L(E + nh̄ω, E) − TR,L(E, E + nh̄ω)

]
. (3)

A positive 1T (E) means a positive contribution ofparticle current from left to right.
Second, I consider the case of zero current. The induced voltage in theright reservoir

(I assume that the chemical potential in the left reservoir is fixed) is now found via the
relation

T ′eV = 〈1T 〉EF (4)

where

T ′eV ≡
∑

n

∫ ∞

0
TL,R(E + nh̄ω, E)

[
fµ+eV (E) − fµ(E)

]
dE. (5)

If 〈1T 〉 is positive, the induced voltage in the right reservoir will be negative. In the
following calculations I have considered fields sufficiently weak that only the neighbouring



Letter to the Editor L627

energy levels,E ± h̄ω, have to be considered in the calculation of1T (E). That the
calculations are in this weak-field regime is checked by reducing the electric field by a
factor two and observing that1T (E) is reduced by a factor four.

Figure 2. A plot of the net transmission (equation (3) in the text) as a function of the scaled
energy,E/EF . The solid line displays the average with respect to the polarization angle,φ, of
the linear polarized field. The dotted line shows the zero-field transmission. All quantities are
in dimensionless units.

The setup consists of a QPC with an artificial impurity potential at one of its sides. The
impurity potential is assumed to be placed on the left of the QPC. This potential is taken to
be repulsive i.e. it is an antidot. Figure 1 displays a plot of the configurations used in the
actual calculations. The antidot should not be too close to the QPC as this would block all
transport, but it should be sufficiently near the QPC to have a strong impact on the transport
properties.

The basic idea for the setup is very simple. Assume that the QPC is close to the
threshold of the first conductance step, so that most of the zero field transport is dominated
by the constriction. The artificial impurity breaks the longitudinal mirror symmetry around
the centre of the QPC and makes it possible to induce currents in the presence of radiation.
The presence of the antidot will now cause additional electron scattering. Electrons will
either be scattered to the right, through the point contact, or scattered to the left, away
from the QPC region. If the additional scattering is to the left, this will essentially have no
effect on the current, since the electrons would very probably have been scattered in that
direction by the QPC anyway (remember that the QPC should be close to threshold for the
first conductance step). Antidot scattering through the QPC will, on the other hand, lead
to a real increase in particle current in that direction. This picture may seem simplistic.
Nevertheless, all calculations indicate that net particle current is induced only to the right
(1T (E) > 0).

As model parameters I have chosenkF = 1.3 × 108 m−1, and the minimum width,
W0, of the QPC is given bykF W0/π = 1.46. The repulsive potential,U , of the circular
antidot isU = 2EF . In these calculations, I have assumed that the radiation field is linearly
polarized, with a polarization angle,φ, with respect to the longitudinal direction. The
electric field has been chosen to be 100 V cm−1 and h̄ω = EF /2 ('5 meV), which is
well within experimental realization [3]. I have assumed that the effective electron mass is
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m∗ = 0.067me. The confinement potential is given by hard wall boundary conditions: the
wavefunction vanishes aty = ±W(x)/2.

Figure 2 displays the energy dependence of the transmission for the configuration
with the smallest antidot plotted in figure 1. The solid line shows the photo-induced
transmission,〈1T 〉(E), averaged over the polarization angle,φ. The dashed line is the
zero-field transmission,t0, for the system.

Figure 3. The same as figure 2, but for a system with a larger antidot. The radius of the antidot
is 4

3 times the size of that for which calculations are presented in figure 2.

Figure 3 displays the same information as figure 2, but for an antidot where the radius
is increased by a factor43 (corresponding to the largest antidot in figure 1). The distance
between the QPC and the antidot is unaltered. On the basis of the calculations, the following
observations have been made:

(i) The energy-averaged photo-induced transmission,〈1T 〉E(φ) does not show any
significant dependence onφ;

(ii) The photo-induced transmission,1T (E), is always non-negative (for all choices of
φ);

(iii) As can be seen by comparing figures 2 and 3, the larger radius gives the best
photoresponse.

One should note that one of the peaks in1T (E) coincides with a peak int0, in both
figures 2 and 3. This is probably not accidental, as a peak int0 indicates an increase
in the local density of states in the region between the QPC and the antidot (‘resonant
tunnelling’). An increase of the local density of states in this region should in general
enhance the probability for photon scattering events and thereby enhance1T (E). For the
particular value of electric field chosen here, the amplitudes of1T (E) and t0 are almost
equal, but this is only accidental. Also note that the peak int0(E) gives rise to a peak in
〈1T 〉(E) at E − h̄ω.

It is clear from equations (2) and (4) that although the induced current is small, the
induced voltage can be significant. The induced currents for the two examples given here
are I = 0.0058× 2e

h
EF = 4.3 nA for the calculations corresponding to figure 2, and

I = 0.0087× 2e
h
EF = 6.5 nA for figure 3. Estimates of the induced voltages are 1 and 3 mV

respectively. Accurate estimates of the induced voltages are not possible since I have not
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taken into account effects from the high electric field which may be generated by sufficiently
large voltage differences in the two reservoirs. This comment applies in particular to the
calculation with the largest antidot, which yields the largest induced voltage. A widening
of the point contact should result in a larger current and a reduced voltage.

In conclusion, I have presented exact numerical calculations for photon-induced currents
due to the presence of an artificial impurity potential in the vicinity of a quantum point
contact. The particle current is induced in the direction from the impurity through the
constriction. If the antidot potential is defined by means of a metallic gate, it should be
possible to turn the effect on and off by switching the gate voltage.

I gratefully acknowledge very interesting discussions with E H Hauge and K A Chao. I
also would like to thank M Jonson, R I Shekter and L Y Gorelik for introducing me to the
idea of utilizing the recursive Green function technique on photon-assisted transport.
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